Lipophilicity Determination of Some Potential Photosystem II Inhibitors on Reversed-Phase High-Performance Thin-Layer Chromatography

Q.S. Wang, L. Zhang, H.Z. Yang, and H.Y. Liu

National Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Abstract

The retention characteristics of 25 2-cyano-3-methylthio-3substituted amine-acrylates are determined using reversed-phase thin-layer chromatography (RP-TLC) with methanol-water mixtures as eluents. The relationship between R_m values and partition coefficients (*C* log *P*) are established. The R_m values decrease linearly with increasing methanol concentration in the eluent. The R_m values extrapolated to zero organic modifier concentration (R_m) in the eluent are highly related to *C* log *P*. The R_m value can be used to evaluate the lipophilicity of this kind of compound.

Introduction

In previous years, quantitative structure-activity relationships (QSARs) have been widely accepted and have progressed well (1,2). Lipophilicity is an important physico-chemical parameter of a compound, and it plays a vital role in QSAR studies. The traditional method of determining lipophilicity using octanol-water partitioning has some disadvantages. It is being supplanted by chromatographic procedures such as reversedphase high-performance liquid chromatography (RP-HPLC) (3,4) and reversed-phase thin-layer chromatography (RP-TLC) (5). The TLC method has some advantages over the traditional method: it is rapid and relatively simple, it has a low cost, very small amounts of substances are required, and the compounds need not be very pure.

Using methanol–water mixtures as mobile phases and reversed-phase C_{18} as a stationary phase in HPLC, Brauman (3) found that log k values extrapolated to zero organic modifier concentration (R_{m0}) show a good correlation with octanol–water partition coefficients. Because the basic partitioning conditions are similar in RP-TLC and RP-HPLC, the same type of mobile and stationary phases were applied to RP-TLC.

 $R_{\rm m}$ values obtained using RP-TLC have traditionally been used

as lipophilicity parameters, but R_m values depend significantly on mobile phase composition (6). R_{m0} values (i.e., R_m extrapolated to 0% organic modifier concentration) are preferable

Table I. Structures of 25 2-Cyano-3-Methylthio-3-Substituted Amine-Acrylates						
	R ¹ NH COOR ²					
\circ						
	MeS / CN					
Compound	R ₁	R ₂				
1	$C_6H_5CH_2$	C_2H_5				
2	<i>i</i> -Pr	C_2H_5				
3	<i>n</i> -Bu	C_2H_5				
4	$p-NO_2C_6H_4$	C_2H_5				
5	$m-NO_2C_6H_4$	C_2H_5				
6	CH ₃ O	C_2H_5				
7	o-CH ₃ C ₆ H ₄ CH ₂	C_2H_5				
8	$p-CH_3C_6H_4CH_2$	C_2H_5				
9	p-CH ₃ OC ₆ H ₄ CH ₂	C_2H_5				
10	o-CH ₃ OC ₆ H ₄ CH ₂	C_2H_5				
11	p-CH ₃ OC ₆ H ₄ CH ₂ CH ₂	C_2H_5				
12	o-CF ₃ C ₆ H ₄ CH ₂	C_2H_5				
13	p-CF ₃ C ₆ H ₄ CH ₂	C_2H_5				
14	p-ClC ₆ H ₄ OC ₆ H ₄	C_2H_5				
15	$p-NO_2C_6H_4CO$	C_2H_5				
16	$p-CIC_6H_4CH_2$	C_2H_5				
17	$C_6H_5CH_2$	CH ₂ CH ₂ OCH ₃				
18	$p-CH_3C_6H_4CH_2$	CH ₂ CH ₂ OCH ₃				
19	p-CH ₃ OC ₆ H ₄ CH ₂	CH ₂ CH ₂ OCH ₃				
20	p-CF ₃ C ₆ H ₄ CH ₂	CH ₂ CH ₂ OCH ₃				
21	$C_6H_5CH_2$	CH ₂ CH ₂ OCH ₂ CH ₃				
22	p-CH ₃ C ₆ H ₄ CH ₂	CH ₂ CH ₂ OCH ₂ CH ₃				
23	p-CH ₃ OC ₆ H ₄ CH ₂	CH ₂ CH ₂ OCH ₂ CH ₃				
24	p-CF ₃ C ₆ H ₄ CH ₂	CH ₂ CH ₂ OCH ₂ CH ₃				
25	p-ClC ₆ H ₄ CH ₂	CH ₂ CH ₂ OCH ₂ CH ₃				

2-Cyano-3-methylthio-3-substituted amine-

acrylates are potential photosystem inhibitors that block electron transfer in photosystems. They show high inhibitory activities, and their inhibitory activities are related to their lipophilicity. The objectives of this work were to determine the retention of this kind of compound on precoated C_{18} high-performance TLC (HPTLC) plates using methanol–water mixtures as eluents and to find the relationship between retention characteristics and lipophilicity param-

as lipophilicity parameters (7-9).

eters $(C \log P)$ of the compounds.

The structures of 25 2-cyano-3-methylthio-3-substituted amine-acrylates compounds are listed in Table I. This series of compounds was synthesized in our Organic Synthesis Laboratory, and their structures were verified using many methods: infrared, nuclear magnetic resonance, mass spectrometry, and element analysis. Approximately 1 mg/mL of each compound in

Experimental

Materials

Table II. R_{f} Values of Twenty-five Compounds in all Experimental Conditions and Their C log P Values

			I	R _f			
Compound	0.65	0.70	0.75	0.80	0.85	0.90	C log P
1	0.150	0.210	0.330	0.479	0.571	0.660	2.11
2	0.235	0.303	0.413	0.540	0.631	0.668	1.23
3	0.150	0.213	0.316	0.456	0.558	0.628	1.98
4	0.228	0.310	0.474	0.592	0.675	0.709	2.00
5	0.217	0.292	0.453	0.564	0.639	0.708	2.00
6	0.152	0.229	0.333	0.444	0.554	0.634	1.98
7	0.099	0.178	0.276	0.384	0.512	0.607	2.56
8	0.082	0.160	0.251	0.370	0.482	0.589	2.61
9	0.144	0.243	0.352	0.471	0.573	0.668	2.03
10	0.123	0.210	0.295	0.406	0.527	0.632	2.03
11	0.140	0.216	0.334	0.446	0.554	0.655	2.26
12	0.096	0.170	0.260	0.376	0.536	0.640	2.99
13	0.103	0.182	0.270	0.389	0.560	0.672	2.99
14	0.020	0.055	0.093	0.178	0.348	0.456	4.74
15	0.469	0.533	0.607	0.691	0.765	0.818	1.19
16	0.098	0.162	0.259	0.374	0.528	0.650	2.82
17	0.254	0.357	0.463	0.562	0.680	0.757	1.40
18	0.151	0.239	0.338	0.459	0.594	0.700	1.90
19	0.239	0.340	0.446	0.554	0.676	0.734	1.32
20	0.148	0.256	0.370	0.496	0.668	0.704	2.29
21	0.164	0.291	0.382	0.486	0.626	0.691	1.93
22	0.092	0.192	0.290	0.388	0.545	0.624	2.43
23	0.177	0.290	0.381	0.495	0.627	0.696	1.85
24	0.092	0.216	0.308	0.441	0.596	0.689	2.81
25	0.110	0.202	0.286	0.410	0.554	0.646	2.64

Table III. Coefficients in Eq 2						
Compound	R _{m0}	b	r			
1	3.564	-4.328	0.9952			
2	2.766	-3.479	0.9913			
3	3.407	-4.094	0.9951			
4	3.015	-3.878	0.9837			
5	3.059	-3.887	0.9900			
6	3.320	-3.996	0.9976			
7	3.886	-4.576	0.9965			
8	4.078	-4.757	0.9951			
9	3.499	-4.267	0.9960			
10	3.611	-4.296	0.9983			
11	3.548	-4.284	0.9977			
12	4.153	-4.923	0.9987			
13	4.182	-5.008	0.9990			
14	5.817	-6.446	0.9952			
15	1.956	-2.891	0.9981			
16	4.182	-4.957	0.9998			
17	2.956	-3.844	0.9994			
18	3.641	-4.465	0.9997			
19	2.985	-3.845	0.9978			
20	3.764	-4.689	0.9919			
21	3.360	-4.173	0.9934			
22	4.028	-4.788	0.9918			
23	3.296	-4.104	0.9964			
24	4.298	-5.223	0.9915			
25	3.855	-4.613	0.9957			

Apparatus

TLC was performed on precoated C₁₈ RP-HPTLC plates (10 × 10 cm, F254) from Merck (Darmstadt, Germany). A Nanomat applicator (Camag, Muttenz, Switzerland) was used with a Pt–Ir pointed glass capillary. Plates were developed in a closed chamber (Camag).

methanol was used for spotting.

An SGI Indy Workstation (Silicon Graphics Incorporated, Mountain View, CA) with Sybyl 6.22 (Tripos Company, St. Louis, MO) was used for data collecting, and a PC computer was used for data processing.

Chromatography

Methanol–water mixtures were used as mobile phases; the concentrations of methanol were 65%, 70%, 75%, 80%, 85%, and 90%. Developments were carried out in a closed chamber at room temperature, and the distance of development was approximately 5 cm. After development, the plates were dried in air and the spots were viewed under an ultraviolet lamp. The $R_{\rm f}$ values of each compound are listed in Table II. The $C \log P$ values that were obtained from the Indy workstation are also listed in Table II.

Results and Discussion

The $R_{\rm m}$ values of each compound were obtained using the following equation:

Linear correlation between $R_{\rm m}$ values and the concentration of organic modifier in the eluents was calculated separately for each compound according to the following equation:

where *c* is the concentration of methanol in the eluent. The R_{m0} and *b* values are listed in Table III.

All of the compounds showed normal retention behavior; that is, their R_m values decreased linearly with the increasing concentration of methanol in the mobile phase, as can be seen in Figure 1.

The relationship between $R_{\rm m}$ values and C log P under all experimental conditions was determined, and the results are listed in Table IV. Note that the $R_{\rm m}$ values are related to the lipophilicity of these compounds. The regression coefficient in the relationship between $R_{\rm m}$ and C log P increased with

Table IV. Relationships Between R_m and C log P in all Experimental Conditions (*n* = 25, *P* < 0.0001) CH₃OH (%) **Regression equations** F r s 65 $R_{\rm m} = -0.453 + 0.370C \log P$ 0.9275 0.112 142 70 $R_{\rm m} = -0.114 + 0.284C \log P$ 0.9118 0.0957 113 75 $R_{\rm m} = -0.299 + 0.266C \log P$ 0.9071 0.0924 107 80 $R_{\rm m} = -0.438 + 0.230C \log P$ 0.8965 0.0850 94.2 $R_{\rm m} = -0.529 + 0.169C \log P$ 85 0.8190 0.0886 46.8

0.0842

0.7792

35.5

 $R_{\rm m} = -0.618 + 0.140C \log P$

90

Table V. Results of Factor A	nalysis	
Variable	Factor 1	
C log P	0.9778	
R _{m0}	0.9936	
b	-0.9924	
Eigen values	2.928	
% Total variance	97.61	

decreasing concentration of methanol in the mobile phase.

Factor analysis was carried out for the three parameters $C \log P$, R_{m0} , and b. The results are listed in Table V. The results show that the three parameters are highly correlated. Using linear regression analysis, the following equations were obtained:

$$\begin{split} R_{\rm m0} &= 1.542 + 0.922C \log P \\ (n &= 25, \, r = 0.9512, \, s = 0.224, \, F = 218.8, \, P < 0.00001) \quad \text{Eq 3} \end{split}$$

$$b = -2.429 - 0.875C \log P$$

(n = 25, r = 0.9476, s = 0.221, F = 202, P < 0.00001) Eq 4

The correlation coefficients (*r*) of the two equations are very high, which indicates that R_{m0} and *b* values are highly related to *C* log *P* in a linear relationship. Therefore, R_{m0} or *b* values can be used to evaluate the lipophilicity of these kinds of compounds, and R_{m0} is better than *b*.

It can be seen that the retention data or C log P values of these compounds are related to their structures. First, the more CH_2 in the R_1 group, the higher the R_m values and the higher the *C* log *P* values (for example, compounds 9 and 11). This indicates that CH_2 is a lipophilic group. Second, although the regioisomers may have the same $C \log P$ values, their $R_{\rm m}$ values are different, which may result from the different position of the substitute (for example, compounds 4 and 5, 9 and 10, or 12 and 13). There is an exception in compounds 7 and 8; they have different $C \log P$ values as well as different $R_{\rm m}$ values. It is thought that the position of CH₃ may have a relatively greater influence on C log P value. Finally, when the compounds that have the same R_1 group and a different R_2 group (for example, compounds 1, 17, and 21; 8, 18, and 22; or 13, 20, and 24) are considered, it is discovered that their $R_{\rm f}$ values are in the order of $C_2H_5 < CH_2CH_2OCH_2CH_3 < CH_2CH_2OCH_3$; their $R_{\rm m}$ values are $C_2H_5 > CH_2CH_2OCH_2CH_3 > CH_2CH_2OCH_3$; and their C log P values are $C_2H_5 > CH_2CH_2OCH_2CH_3 >$ CH₂CH₂OCH₃.

Conclusion

It has been shown that R_{m0} values obtained using RP-TLC are a good alternative for lipophilicity determination. This method is low in cost, rapid, and requires minute amounts of samples that need not necessarily be very pure. RP-TLC can be extensively applied to determine lipophilicity.

References

- 1. C. Hansch. In *Structure-Activity Relationships,* C.J. Cavallito, Ed. Pergamon Press, Oxford, England, 1973, p 57.
- J. Andrew, W.E. Stuper, P. Brugger, and S. Jurs. Computer Assisted Studies of Chemical Structure and Biological Function. Wiley, New York, NY, 1979.
- T. Braumann. Determination of hydrophobic parameters by reversed-phase liquid chromatography: theory, experimental tech-

niques and application in studies on quantitative structure-activity relationships. *J. Chromatogr.* **373:** 191–225 (1986).

- G.L. Biagi, M.C. Guerra, A.M. Barbaro, S. Barbieri, M. Recanatini, and P.A. Borea. Study of the lipophilic character of xanthine and adenosine derivatives. II. Relationships between log k¹, R_m and log *P* values. *J. Liq. Chromatogr.* **13**: 913–27 (1990).
- M.C. Guerra, A.M. Barbaro, G. Cantelli Forti, M.T. Foffani, G.L. Biagi, P.A. Borea, and A. Fini. R_m and log P values of 5-nitroimidazoles. J. Chromatogr. 216: 93–102 (1981).
- I.D. Wilson, C.R. Rielby, and E.D. Morgan. Selective effects of mobile and stationary phases in reversed-phase high-performance liquid chromatography of ecdysteroids. *J. Chromatogr.* 238: 97–102 (1982).
- 7. K. Dross, C. Sonntag, and R. Mannhold. Determination of the hydrophobicity parameter R_{mw} by reversed-phase thin-layer chromatography. *J. Chromatogr. A* **673**: 113–24 (1994).
- 8. T. Cserháti. Determination of the lipophilicity of some aniline derivatives by reversed-phase thin-layer chromatography: the effect of the organic phase in the eluent. *Chromatographia* **18**: 318–22 (1984).
- Y. Darwish, T. Cserháti, and E. Forgács. Relationship between lipophilicity and specific hydrophobic surface area of a nonhomologous series of pesticides. *J. Planar Chromatogr.* 6: 458–62 (1993).

Manuscript accepted December 11, 1998.